Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Commun Biol ; 7(1): 565, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745044

RESUMEN

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Progresión de la Enfermedad , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Factores de Transcripción SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Persona de Mediana Edad , Línea Celular Tumoral , Animales , Ratones , Proliferación Celular/genética , Ratones Desnudos , Pronóstico , Ratones Endogámicos BALB C
2.
J Ovarian Res ; 17(1): 84, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637813

RESUMEN

BACKGROUND: Macrophages play an essential role in regulating ovarian cancer immune microenvironment. Studies have shown that m6A methylation could influence immune microenvironment in cancer. In this study, we investigated the roles of m6A demethylase ALKBH5 and m6A recognition protein IGF2BP2 played in regulating macrophages polarization in ovarian cancer. METHODS: In this study, we first explored the differentially expressed m6A methylation enzymes in M0 and M2 macrophages according to two independent GEO datasets. TIMER2.0 and GSCA database were used to explore the immune analysis of ALKBH5 and IGF2BP2 in ovarian cancer. K-M plotter and TIMER2.0 databases were used to evaluate the prognostic role of ALKBH5 and IGF2BP2 in ovarian cancer. For CNV mutation analysis of ALKBH5 and IGF2BP2, cBioPortal and GSCA databases were used. For single-cell analysis, sc-TIME and HPA softwares were used to analyze the roles of ALKBH5 and IGF2BP2 played in immune cells in ovarian cancer. To identify the role of ALKBH5 played in macrophage polarization, RT-PCR was used to verify the macrophage polarization related markers in vitro study. The function of ALKBH5 played in ovarian cancer was further analyzed through GO and KEGG analysis. FINDINGS: In this study, we found that ALKBH5 and IGF2BP2 were up-regulated in M2 macrophages, which showed closely correlation with immune cells expressions in ovarian cancer, especially with macrophages. Ovarian cancer patients with higher expression of ALKBH5 and IGF2BP2 showed worse prognosis, possibly because of their close correlation with immune response. ALKBH5 also correlated with macrophage phenotypes in single-cell levels analysis. However, the expression level of IGF2BP2 in ovarian cancer immune microenvironment was very low. The results of RT-PCR indicated the potential role of ALKBH5 in M2 polarization of macrophages. INTERPRETATION: ALKBH5 participated in regulating macrophage M2 polarization in ovarian cancer immune microenvironment.


Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/genética , Neoplasias Ováricas/genética , Bases de Datos Factuales , Macrófagos , Proteínas de Unión al ARN , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
3.
Biochem Soc Trans ; 52(2): 707-717, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629637

RESUMEN

The RNA modification N6-methyladenosine (m6A) is conserved across eukaryotes, and profoundly influences RNA metabolism, including regulating RNA stability. METTL3 and METTL14, together with several accessory components, form a 'writer' complex catalysing m6A modification. Conversely, FTO and ALKBH5 function as demethylases, rendering m6A dynamic. Key to understanding the functional significance of m6A is its 'reader' proteins, exemplified by YTH-domain-containing proteins (YTHDFs) canonical reader and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) non-canonical reader. These proteins play a crucial role in determining RNA stability: YTHDFs mainly promote mRNA degradation through different cytoplasmic pathways, whereas IGF2BPs function to maintain mRNA stability. Additionally, YTHDC1 functions within the nucleus to degrade or protect certain m6A-containing RNAs, and other non-canonical readers also contribute to RNA stability regulation. Notably, m6A regulates retrotransposon LINE1 RNA stability and/or transcription via multiple mechanisms. However, conflicting observations underscore the complexities underlying m6A's regulation of RNA stability depending upon the RNA sequence/structure context, developmental stage, and/or cellular environment. Understanding the interplay between m6A and other RNA regulatory elements is pivotal in deciphering the multifaceted roles m6A plays in RNA stability regulation and broader cellular biology.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Estabilidad del ARN , Proteínas de Unión al ARN , Adenosina/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Metiltransferasas/metabolismo , ARN/metabolismo , ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Procesamiento Postranscripcional del ARN , Metilación de ARN
4.
Int J Biol Sci ; 20(5): 1729-1743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481816

RESUMEN

Background: N6-methyladenosine (m6A) is the most common and abundant mRNA modification, playing an essential role in biological processes and tumor development. However, the role of m6A methylation in skin cutaneous melanoma (SKCM) is not yet clear. This study analyzed the expression of m6A-related functional genes in SKCM and aimed to explore the key demethylase ALKBH5 mediated m6A modification and its potential mechanism in human SKCM. Methods: Based on public databases, the m6A-related gene expression landscape in SKCM was portrayed. MeRIP-Seq and RNA-Seq were used to recognize the downstream target of ALKBH5. In vivo and in vitro functional phenotype and rescue functional experiments were performed to explore the mechanism of the ALKBH5-m6A-ABCA1 axis in SKCM. Results: We found ALKBH5 upregulated in SKCM, associated with poor prognosis. ALKBH5 can promote melanoma cell proliferation, colony formation, migration, and invasion and inhibit autophagy in vitro, facilitating tumor growth and metastasis in vivo. We identified ABCA1, a membrane protein that assists cholesterol efflux, as a downstream target of ALKBH5-mediated m6A demethylation. Finally, our data demonstrated that ALKBH5 promoted SKCM via mediating ABCA1 downregulation by reducing ABCA1 mRNA stability in an m6A-dependent manner. Conclusion: Our findings exhibited the functional value of the key demethylase ALKBH5 mediated m6A modification in the progression of SKCM, suggesting the ALKBH5-m6A-ABCA1 axis as a potential therapeutic target in SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Piel , Autofagia/genética , Desmetilación , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Transportador 1 de Casete de Unión a ATP
5.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
6.
Biomed Pharmacother ; 174: 116479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537580

RESUMEN

RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Neoplasias , Microambiente Tumoral , Humanos , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/enzimología , Metilación , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Regulación Neoplásica de la Expresión Génica
7.
Discov Med ; 36(180): 61-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273746

RESUMEN

BACKGROUND: Activating autophagy promotes the invasion and progression of prostate cancer (PCa). Tetraspanin 1 (TSPAN1) has been found to promote autophagy flux and its up-regulation can enhance the migration of PCa cells. In addition, there is a binding relationship between TSPAN1 and the N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5). Therefore, we wanted to know whether ALKBH5 could affect autophagy by regulating TSPAN1 expression, and thereby participate in PCa malignant progression. METHODS: The expression of ALKBH5 and TSPAN1 in PCa was examined by quantitative real-time polymerase chain reaction (qRT-PCR), and the functional tests included cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) staining assays. The expression of autophagy-related proteins was confirmed by western blot. Detection of the m6A level of TSPAN1 was performed using methylated RNA immunoprecipitation sequencing (MeRIP)-qPCR. RESULTS: ALKBH5 was significantly downregulated in PCa cells (LNCaP, DU145 and PC3 cells; p < 0.001). Overexpression of ALKBH5 inhibited cell viability and the number of EdU-positive cells (p < 0.01, p < 0.001), decreased the ratio of microtubule-associated protein light chain 3B (LC3B)-II/LC3B-I, and promoted P62 protein expression in LNCaP and DU145 cells (p < 0.001). The m6A level of TSPAN1 was high in LNCaP and DU145 cells, but was inhibited by the overexpression of ALKBH5 (p < 0.001). TSPAN1 overexpression promoted cell viability (p < 0.001), increased EdU-positive cells and the LC3B-II/LC3B-I ratio (p < 0.001, p < 0.05), reduced P62 protein expression (p < 0.05, p < 0.001), and reversed the regulation of ALKBH5 overexpression in LNCaP and DU145 cells (p < 0.01, p < 0.001). CONCLUSIONS: Promoting ALKBH5 expression may inhibit PCa autophagy by reducing the m6A level of TSPAN1.


Asunto(s)
Adenina/análogos & derivados , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Próstata , Autofagia/genética , Supervivencia Celular , Tetraspaninas/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
8.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199493

RESUMEN

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , ARN Mensajero/metabolismo
9.
Sci Rep ; 14(1): 1303, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221546

RESUMEN

Despite numerous reports indicating the significant impact of RNA modification on malignant glioblastoma (GBM) cell behaviors such as proliferation, invasion and therapy efficacy, its specific involvement in glioblastoma (GBM) angiogenesis is remains unclear and is currently under investigation. In this study, we aimed to investigate the relevance between RNA modification regulators and GBM angiogenesis. Our study employed bioinformatic analyses, including Gene Set Enrichment Analysis (GSEA), differential expression analysis, and Kaplan-Meier survival analysis, to identify regulators of angiogenesis-associated RNA modification (RM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to identify the enrichment of angiogenesis associated signatures in ALKBH5-high expression GBMs. We also utilized Western blot to verify the upregulation of ALKBH5 in clinical GBM samples. By a series of in vitro and in vivo assays, including plasmid transfection, wound healing, transwell invasion test, tube formation, RT-qPCR, ELISA assays and xenograft mice model, we validated the angiogenesis regulation ability of ALKBH5 in GBM. The N6-methyladenosine (m6A) modification "erase" ALKBH5 emerged as a candidate regulator associated with angiogenesis, demonstrating elevated expression and robust prognostic predictive ability in GBM patients. We also revealed enrichment of vasculature development biological process in GBMs with high ALKBH5 expression. Subsequently, we validated the elevated the expression of ALKBH5 in clinical GBM and paired adjacent tissues through western blot. Additionally, we knocked down the expression of ALKBH5 using sh-RNAs in U87 GBM cells to access the angiogenesis induction ability in U87 cells. In vitro experiments, Human Umbilical Vein Endothelial Cells (HUVECs) were used to perform wound healing, transwell migration and tube formation analysis, results indicated that ALKBH5 knock-down of U87 cells could decrease the pro-angiogenesis ability of U87 GBM cells. Further validation of our bioinformatic findings confirmed that ALKBH5 knockdown impaired VEGFA secretion in both in vitro and in vivo settings in U87 cells. These results comprehensively affirm the crucial role of ALKBH5 in regulating GBM-induced angiogenesis, both in vitro and in vivo. ALKBH5 not only emerges as a promising prognostic factor for GBM patients, but also plays a pivotal role in sustaining GBM progression by promoting angiogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Pronóstico , Angiogénesis , Neoplasias Encefálicas/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , ARN/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
10.
Redox Biol ; 69: 102993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104484

RESUMEN

Resistance to chemotherapy is the main reason for treatment failure and poor prognosis in patients with triple-negative breast cancer (TNBC). Although the association of RNA N6-methyladenosine (m6A) modifications with therapy resistance is noticed, its role in the development of therapeutic resistance in TNBC is not well documented. This study aimed to investigate the potential mechanisms underlying reactive oxygen species (ROS) regulation in doxorubicin (DOX)-resistant TNBC. Here, we found that DOX-resistant TNBC cells displayed low ROS levels because of increased expression of superoxide dismutase (SOD2), thus maintaining cancer stem cells (CSCs) characteristics and DOX resistance. FOXO1 is a master regulator that reduces cellular ROS in DOX-resistant TNBC cells, and knockdown of FOXO1 significantly increased ROS levels by inhibiting SOD2 expression. Moreover, the m6A demethylase ALKBH5 promoted m6A demethylation of FOXO1 mRNA and increased FOXO1 mRNA stability in DOX-resistant TNBC cells. The analysis of clinical samples revealed that the increased expression levels of ALKBH5, FOXO1, and SOD2 were significantly positively correlated with chemoresistance and poor prognosis in patients with TNBC. To our knowledge, this is the first study to highlight that ALKBH5-mediated FOXO1 mRNA demethylation contributes to CSCs characteristics and DOX resistance in TNBC cells. Furthermore, pharmacological targeting of FOXO1 profoundly restored the response of DOX-resistant TNBC cells, both in vitro and in vivo. In conclusion, we demonstrated a critical function of ALKBH5-mediated m6A demethylation of FOXO1 mRNA in restoring redox balance, which in turn promoting CSCs characteristics and DOX resistance in TNBC, and suggested that targeting the ALKBH5/FOXO1 axis has therapeutic potential for patients with TNBC refractory to chemotherapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Especies Reactivas de Oxígeno , Doxorrubicina/farmacología , ARN Mensajero/genética , Estabilidad del ARN , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
11.
J Am Heart Assoc ; 13(1): e031353, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38156523

RESUMEN

BACKGROUND: Chemotherapy-induced cardiovascular disease is a growing concern in the elderly population who have survived cancer, yet the underlying mechanism remains poorly understood. We investigated the role of ALKBH5 (AlkB homolog 5), a primary N6-methyladenosine (m6A) demethylase, and its involvement in m6A methylation-mediated regulation of targets in aging-associated doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: To validate the relationship between doxorubicin-induced cardiotoxicity and aging, we established young and old male mouse models. ALKBH5 expression was modulated through adeno-associated virus 9 (in vivo), Lentivirus, and siRNAs (in vitro) to examine its impact on cardiomyocyte m6A modification, doxorubicin-induced cardiac dysfunction, and remodeling. We performed mRNA sequencing, methylated RNA immunoprecipitation sequencing, and molecular assays to unravel the mechanism of ALKBH5-m6A modification in doxorubicin-induced cardiotoxicity. Our data revealed an age-dependent increase in doxorubicin-induced cardiac dysfunction, remodeling, and injury. ALKBH5 expression was elevated in aging mouse hearts, leading to reduced global m6A modification levels. Through mRNA sequencing and methylated RNA immunoprecipitation sequencing analyses, we identified ARID2 (AT-rich interaction domain 2) as the downstream effector of ALKBH5-m6A modulation in cardiomyocytes. Further investigations revealed that ARID2 modulates DNA damage response and enhances doxorubicin-induced cardiomyocyte apoptosis. CONCLUSIONS: Our findings provide insights into the role of ALKBH5-m6A modification in modulating doxorubicin-induced cardiac dysfunction, remodeling, and cardiomyocyte apoptosis in male mice. These results highlight the potential of ALKBH5-targeted treatments for elderly patients with cancer in clinical settings.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Cardiotoxicidad , Animales , Humanos , Masculino , Ratones , Envejecimiento , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Apoptosis , Doxorrubicina/toxicidad , Miocitos Cardíacos , ARN Mensajero , ARN Interferente Pequeño
12.
J Cell Mol Med ; 28(2): e18066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38098223

RESUMEN

The long noncoding RNA PVT1 is reported to act as an oncogene in several kinds of cancers, especially ovarian cancer (OV). Abnormal levels of N6 -methyladenosine, a dynamic and reversible modification, are associated with tumorigenesis and malignancies. Our previous study reported that PVT1 plays critical roles in regulating OV. However, it is still largely unknown how m6 A modification affects OV via PVT1. In this study, we aimed to investigate the regulation of ALKBH5 by affecting PVT1 in OV. We first found that the PVT1 RNA level was higher in OV cells than in IOSE80 cells, and conversely, the m6 A modification level of PVT1 was lower in OV cells. By searching the HPA, ALKBH5, which is responsible for PVT1 demethylation, was found to be upregulated in OV tissues versus normal ovarian tissues. ALKBH5 binds to PVT1 RNA, and knockdown of ALKBH5 decreased PVT1 RNA levels. ALKBH5 also increased FOXM1 levels by upregulating PVT1, at least partially. Knockdown of ALKBH5 suppressed OV growth, colony formation, tumour formation and invasion, which were partially reversed by overexpression of PVT1. Moreover, ALKBH5 knockdown decreased FOXM1 levels by regulating PVT1 RNA expression, subsequently increasing the sensitivity to carboplatin, 5-FU and docetaxel chemotherapy. Taken together, these results indicate that ALKBH5 directly regulates the m6 A modification and stability of PVT1. Then, modified PVT1 further regulates FOXM1 and thus affects malignant behaviours and chemosensitivity in OV cells. All these results indicate that ALKBH5 regulates the malignant behaviour of OV by regulating PVT1/FOXM1.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Neoplasias Ováricas/patología , Docetaxel , Carboplatino , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
13.
FASEB J ; 37(12): e23294, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37966425

RESUMEN

Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)-based therapy is limited by cell senescence. N6-methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA-treated AMSCs. More importantly, compared with AMSCs, shALKBH5-AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification-dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Animales , Ratones , Anciano , Regulación hacia Abajo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Adenosina , Senescencia Celular , Factores Inmunológicos , ARN Mensajero , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
14.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
15.
J Transl Med ; 21(1): 741, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858219

RESUMEN

The process of post-transcriptional regulation has been recognized to be significantly impacted by the presence of N6-methyladenosine (m6A) modification. As an m6A demethylase, ALKBH5 has been shown to contribute to the progression of different cancers by increasing expression of several oncogenes. Hence, a better understanding of the key targets of ALKBH5 in cancer cells could potentially lead to the development of new therapeutic targets. However, the specific role of ALKBH5 in pancreatic neuroendocrine neoplasms (pNENs) remains largely unknown. Here, we demonstrated that ALKBH5 was up-regulated in pNENs and played a critical role in tumor growth and lipid metabolism. Mechanistically, ALKBH5 over-expression was found to increase the expression of FABP5 in an m6A-IGF2BP2 dependent manner, leading to disorders in lipid metabolism. Additionally, ALKBH5 was found to activate PI3K/Akt/mTOR signaling pathway, resulting in enhanced lipid metabolism and proliferation abilities. In conclusion, our study uncovers the ALKBH5/IGF2BP2/FABP5/mTOR axis as a mechanism for aberrant m6A modification in lipid metabolism and highlights a new molecular basis for the development of therapeutic strategies for pNENs treatment.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias Pancreáticas , Humanos , Metabolismo de los Lípidos/genética , Fosfatidilinositol 3-Quinasas , Neoplasias Pancreáticas/genética , Adenosina , Serina-Treonina Quinasas TOR , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión al ARN , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
16.
Physiol Res ; 72(4): 425-444, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37795886

RESUMEN

FTO and ALKBH5 proteins are essential erasers of N6-adenosine methylation in RNA. We studied how levels of FTO and ALKBH5 proteins changed during mouse embryonic development, aging, cardiomyogenesis, and neuroectodermal differentiation. We observed that aging in male and female mice was associated with FTO up-regulation in mouse hearts, brains, lungs, and kidneys, while the ALKBH5 level remained stable. FTO and ALKBH5 proteins were up-regulated during experimentally induced cardiomyogenesis, but the level of ALKBH5 protein was not changed when neuroectodermal differentiation was induced. HDAC1 depletion in mouse ES cells caused FTO down-regulation. In these cells, mRNA, carrying information from genes that regulate histone signature, RNA processing, and cell differentiation, was characterized by a reduced level of N6-adenosine methylation in specific gene loci, primarily regulating cell differentiation into neuroectoderm. Together, when we compared both RNA demethylating proteins, the FTO protein level undergoes the most significant changes during cell differentiation and aging. Thus, we conclude that during aging and neuronal differentiation, m6A RNA demethylation is likely regulated by the FTO protein but not via the function of ALKBH5.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Masculino , Ratones , Animales , Femenino , Regulación hacia Arriba , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desarrollo Embrionario , ARN/metabolismo , Diferenciación Celular , Adenosina/metabolismo , Envejecimiento/genética
17.
Cell Rep ; 42(10): 113163, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742191

RESUMEN

N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.


Asunto(s)
Leucemia , ARN , Animales , Humanos , Ratones , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metabolismo Energético , Células Madre Hematopoyéticas/metabolismo , ARN/metabolismo , Estabilidad del ARN/genética
18.
J Biol Chem ; 299(8): 105071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474102

RESUMEN

Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Paraspeckles , ARN Largo no Codificante , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Hipoxia , Paraspeckles/metabolismo , ARN Largo no Codificante/genética , Activación Transcripcional , Regulación hacia Arriba
19.
Exp Mol Med ; 55(8): 1743-1756, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524872

RESUMEN

Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Desmetilación , Peróxido de Hidrógeno , Osteoartritis/genética , Estabilidad del ARN , ARN Mensajero/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo
20.
Mol Carcinog ; 62(11): 1700-1716, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37493109

RESUMEN

Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.


Asunto(s)
Adenocarcinoma , Próstata , Masculino , Humanos , Factores de Transcripción , Activación Transcripcional , Adenocarcinoma/genética , Anticuerpos , Glucólisis/genética , Proteínas de Microfilamentos , Transactivadores , Factores Estimuladores hacia 5'/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA